IOP ALGORITHM WORKSHOP, Ocean Optics XIX, 3-4 Oct 2008, Barga, Italy

Questions to be answered:

- (1) SA algorithms typically predefine a series of spectral shapes for the IOP products of interest, which are described through spectral basis vectors and related constants (e.g., S, η , and $a_{\phi}^*(\lambda)$).
- What are the key components?
- What are the relative sensitivities and uncertainties associated with each component?
- Are certain components more critical than others?
- Given that most SA algorithms use similar components, is there consensus amongst community members as to the best definitions to adopt (on global scales)?
- Can the quality of one component be sacrificed to improve the quality of the others?
- (2) What is the optimization or inversion method used?
- How critical is the choice of inversion method (can others be used)?
- What are the sensitivities of the available inversion methods?
- Does the reliability of the methods vary based on location or trophic level?
- (3) Most existing and upcoming ocean color sensors (e.g., SeaWiFS, MODIS, MERIS, VIIRS, etc.) have limited band suites (5 to 8 wavelengths between 400 and 700-nm).
- What is the minimum spectral information required to effect a retrieval?
- Do wavelength requirements vary by trophic level or bioregime?
- Can additional spectral information be utilized, and does its performance improve?
- Does ignoring troublesome bands (e.g., 412-nm affected by absorbing aerosols) improve retrievals?
- (4) What mechanisms are available to identify varying trophic levels or bioregimes and can parameterizations effectively switch from one bioregime to another?
- (5) How do the algorithms perform relative to NOMAD IOPs using NOMAD $R_{rs}(\lambda)$?
- When stratified by trophic level or bioregime (e.g., sorted by C_a)?
- What are the failure conditions?
- (6) How do the algorithms perform relative to NOMAD IOPs using satellite $R_{rs}(\lambda)$ (from a match-up set)?
- When stratified by trophic level or bioregime (e.g., sorted by C_a)?
- What are the failure conditions?
- (7) How do the algorithms perform on various satellite Level-2 scenes?
- When applied to various bioregimes?
- What are the retrieval failure rates? Relative to other algorithms?
- What are the failure conditions?
- What are the remediations to failure (e.g., ignoring negative $R_{rs}(\lambda)$)?
- (8) How do the algorithms perform globally, processed from Level-2 $R_{rs}(\lambda)$?

- (9) How do the algorithms perform globally, processed from Level-3 $R_{rs}(\lambda)$?
- (10) Given lessons learned from questions #1 9 ...
- What are the effective IOP dynamic ranges of each algorithm?
- Can failure conditions in one product be predicted using another (e.g., poor C_a with high $a(\lambda)$)?
- Can a particular set of parameterizations be realized to minimize global satellite inversion failures?
- Are there oceanic or atmospheric conditions for which SA algorithms are simply unpractical?